Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167177, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636615

RESUMO

Mevalonate kinase deficiency (MKD) is an autosomal recessive metabolic disorder associated with recurrent autoinflammatory episodes. The disorder is caused by bi-allelic loss-of-function variants in the MVK gene, which encodes mevalonate kinase (MK), an early enzyme in the isoprenoid biosynthesis pathway. To identify molecular and cellular consequences of MKD, we studied primary fibroblasts from severely affected patients with mevalonic aciduria (MKD-MA) and more mildly affected patients with hyper IgD and periodic fever syndrome (MKD-HIDS). As previous findings indicated that the deficient MK activity in MKD impacts protein prenylation in a temperature-sensitive manner, we compared the subcellular localization and activation of the small Rho GTPases RhoA, Rac1 and Cdc42 in control, MKD-HIDS and MKD-MA fibroblasts cultured at physiological and elevated temperatures. This revealed a temperature-induced altered subcellular localization and activation in the MKD cells. To study if and how the temperature-induced ectopic activation of these signalling proteins affects cellular processes, we performed comparative transcriptome analysis of control and MKD-MA fibroblasts cultured at 37 °C or 40 °C. This identified cell cycle and actin cytoskeleton organization as respectively most down- and upregulated gene clusters. Further studies confirmed that these processes were affected in fibroblasts from both patients with MKD-MA and MKD-HIDS. Finally, we found that, similar to immune cells, the MK deficiency causes metabolic reprogramming in MKD fibroblasts resulting in increased expression of genes involved in glycolysis and the PI3K/Akt/mTOR pathway. We postulate that the ectopic activation of small GTPases causes inappropriate signalling contributing to the molecular and cellular aberrations observed in MKD.

2.
Nat Aging ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609524

RESUMO

Studies in preclinical models suggest that complex lipids, such as phospholipids, play a role in the regulation of longevity. However, identification of universally conserved complex lipid changes that occur during aging, and how these respond to interventions, is lacking. Here, to comprehensively map how complex lipids change during aging, we profiled ten tissues in young versus aged mice using a lipidomics platform. Strikingly, from >1,200 unique lipids, we found a tissue-wide accumulation of bis(monoacylglycero)phosphate (BMP) during mouse aging. To investigate translational value, we assessed muscle tissue of young and older people, and found a similar marked BMP accumulation in the human aging lipidome. Furthermore, we found that a healthy-aging intervention consisting of moderate-to-vigorous exercise was able to lower BMP levels in postmenopausal female research participants. Our work implicates complex lipid biology as central to aging, identifying a conserved aging lipid signature of BMP accumulation that is modifiable upon a short-term healthy-aging intervention.

3.
Front Immunol ; 15: 1379220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550596

RESUMO

Objective: Bi-allelic pathogenic variants in the MVK gene, which encodes mevalonate kinase (MK), an essential enzyme in isoprenoid biosynthesis, cause the autoinflammatory metabolic disorder mevalonate kinase deficiency (MKD). We generated and characterized MK-deficient monocytic THP-1 cells to identify molecular and cellular mechanisms that contribute to the pro-inflammatory phenotype of MKD. Methods: Using CRISPR/Cas9 genome editing, we generated THP-1 cells with different MK deficiencies mimicking the severe (MKD-MA) and mild end (MKD-HIDS) of the MKD disease spectrum. Following confirmation of previously established disease-specific biochemical hallmarks, we studied the consequences of the different MK deficiencies on LPS-stimulated cytokine release, glycolysis versus oxidative phosphorylation rates, cellular chemotaxis and protein kinase activity. Results: Similar to MKD patients' cells, MK deficiency in the THP-1 cells caused a pro-inflammatory phenotype with a severity correlating with the residual MK protein levels. In the MKD-MA THP-1 cells, MK protein levels were barely detectable, which affected protein prenylation and was accompanied by a profound pro-inflammatory phenotype. This included a markedly increased LPS-stimulated release of pro-inflammatory cytokines and a metabolic switch from oxidative phosphorylation towards glycolysis. We also observed increased activity of protein kinases that are involved in cell migration and proliferation, and in innate and adaptive immune responses. The MKD-HIDS THP-1 cells had approximately 20% residual MK activity and showed a milder phenotype, which manifested mainly upon LPS stimulation or exposure to elevated temperatures. Conclusion: MK-deficient THP-1 cells show the biochemical and pro-inflammatory phenotype of MKD and are a good model to study underlying disease mechanisms and therapeutic options of this autoinflammatory disorder.


Assuntos
Lipopolissacarídeos , Deficiência de Mevalonato Quinase , Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Lipopolissacarídeos/metabolismo , Células THP-1 , Fenótipo , Deficiência de Mevalonato Quinase/metabolismo , Fosforilação Oxidativa
4.
Histochem Cell Biol ; 161(2): 133-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38243092

RESUMO

Peroxisomes are membrane-bounded organelles that contain enzymes involved in multiple lipid metabolic pathways. Several of these pathways require (re-)activation of fatty acids to coenzyme A (CoA) esters by acyl-CoA synthetases, which may take place inside the peroxisomal lumen or extraperoxisomal. The acyl-CoA synthetases SLC27A2, SLC27A4, ACSL1, and ACSL4 have different but overlapping substrate specificities and were previously reported to be localized in the peroxisomal membrane in addition to other subcellular locations. However, it has remained unclear if the catalytic acyl-CoA synthetase sites of these enzymes are facing the peroxisomal lumen or the cytosolic side of the peroxisomal membrane. To study this topology in cellulo we have developed a microscopy-based method that uses the previously developed self-assembling split superfolder (sf) green fluorescent protein (GFP) assay. We show that this self-assembling split sfGFP method can be used to study the localization as well as the topology of membrane proteins in the peroxisomal membrane, but that it is less suited to study the location of soluble peroxisomal proteins. With the method we could demonstrate that the acyl-CoA synthetase domains of the peroxisome-bound acyl-CoA synthetases SLC27A2 and SLC27A4 are oriented toward the peroxisomal lumen and the domain of ACSL1 toward the cytosol. In contrast to previous reports, ACSL4 was not found in peroxisomes.


Assuntos
Coenzima A Ligases , Peroxissomos , Coenzima A Ligases/metabolismo , Peroxissomos/metabolismo , Ácidos Graxos/metabolismo , Citosol/metabolismo , Proteínas de Transporte/metabolismo
5.
Free Radic Biol Med ; 212: 241-254, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38159891

RESUMO

Despite the crucial role of peroxisomes in cellular redox maintenance, little is known about how these organelles transport redox metabolites across their membrane. In this study, we sought to assess potential associations between the cellular redox landscape and the human peroxisomal solute carrier SLC25A17, also known as PMP34. This carrier has been reported to function as a counter-exchanger of adenine-containing cofactors such as coenzyme A (CoA), dephospho-CoA, flavin adenine dinucleotide, nicotinamide adenine dinucleotide (NAD+), adenosine 3',5'-diphosphate, flavin mononucleotide, and adenosine monophosphate. We found that inactivation of SLC25A17 resulted in a shift toward a more reductive state in the glutathione redox couple (GSSG/GSH) across HEK-293 cells, HeLa cells, and SV40-transformed mouse embryonic fibroblasts, with variable impact on the NADPH levels and the NAD+/NADH redox couple. This phenotype could be rescued by the expression of Candida boidinii Pmp47, a putative SLC25A17 orthologue reported to be essential for the metabolism of medium-chain fatty acids in yeast peroxisomes. In addition, we provide evidence that the alterations in the redox state are not caused by changes in peroxisomal antioxidant enzyme expression, catalase activity, H2O2 membrane permeability, or mitochondrial fitness. Furthermore, treating control and ΔSLC25A17 cells with dehydroepiandrosterone, a commonly used glucose-6-phosphate dehydrogenase inhibitor affecting NADPH regeneration, revealed a kinetic disconnection between the peroxisomal and cytosolic glutathione pools. Additionally, these experiments underscored the impact of SLC25A17 loss on peroxisomal NADPH metabolism. The relevance of these findings is discussed in the context of the still ambiguous substrate specificity of SLC25A17 and the recent observation that the mammalian peroxisomal membrane is readily permeable to both GSH and GSSG.


Assuntos
Peróxido de Hidrogênio , NAD , Animais , Humanos , Camundongos , NAD/metabolismo , NADP/metabolismo , Dissulfeto de Glutationa/metabolismo , Células HeLa , Células HEK293 , Peróxido de Hidrogênio/metabolismo , Fibroblastos/metabolismo , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Glutationa/metabolismo , Oxirredução , Homeostase , Adenina/metabolismo , Mamíferos/metabolismo
6.
J Inherit Metab Dis ; 47(2): 302-316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38131282

RESUMO

Mevalonate kinase deficiency (MKD) is an autoinflammatory metabolic disorder caused by bi-allelic loss-of-function variants in the MVK gene, resulting in decreased activity of the encoded mevalonate kinase (MK). Clinical presentation ranges from the severe early-lethal mevalonic aciduria to the milder hyper-IgD syndrome (MKD-HIDS), and is in the majority of patients associated with recurrent inflammatory episodes with often unclear cause. Previous studies with MKD-HIDS patient cells indicated that increased temperature, as caused by fever during an inflammatory episode, lowers the residual MK activity, which causes a temporary shortage of non-sterol isoprenoids that promotes the further development of inflammation. Because an increase of the residual MK activity is expected to make MKD-HIDS patients less sensitive to developing inflammatory episodes, we established a cell-based screen that can be used to identify compounds and/or therapeutic targets that promote this increase. Using a reporter HeLa cell line that stably expresses the most common MKD-HIDS variant, MK-V377I, C-terminally tagged with bioluminescent NanoLuc luciferase (nLuc), we screened the Prestwick Chemical Library®, which includes 1280 FDA-approved compounds. Multiple compounds increased MK-V377I-nLuc bioluminescence, including steroids (i.e., glucocorticoids, estrogens, and progestogens), statins and antineoplastic drugs. The glucocorticoids increased MK-V377I-nLuc bioluminescence through glucocorticoid receptor signaling. Subsequent studies in MKD-HIDS patient cells showed that the potent glucocorticoid clobetasol propionate increases gene transcription of MVK and other genes regulated by the transcription factor sterol regulatory element-binding protein 2 (SREBP-2). Our results suggest that increasing the flux through the isoprenoid biosynthesis pathway by targeting the glucocorticoid receptor or SREBP-2 could be a potential therapeutic strategy in MKD-HIDS.


Assuntos
Deficiência de Mevalonato Quinase , Humanos , Deficiência de Mevalonato Quinase/tratamento farmacológico , Deficiência de Mevalonato Quinase/genética , Células HeLa , Receptores de Glucocorticoides/uso terapêutico , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fosfotransferases (Aceptor do Grupo Álcool)
7.
Biomolecules ; 13(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759694

RESUMO

Debaryomyces hansenii is considered an unconventional yeast with a strong biotechnological potential, which can produce and store high amounts of lipids. However, relatively little is known about its lipid metabolism, and genetic tools for this yeast have been limited. The aim of this study was to explore the fatty acid ß-oxidation pathway in D. hansenii. To this end, we employed recently developed methods to generate multiple gene deletions and tag open reading frames with GFP in their chromosomal context in this yeast. We found that, similar as in other yeasts, the ß-oxidation of fatty acids in D. hansenii was restricted to peroxisomes. We report a series of experiments in D. hansenii and the well-studied yeast Saccharomyces cerevisiae that show that the homeostasis of NAD+ in D. hansenii peroxisomes is dependent upon the peroxisomal membrane protein Pmp47 and two peroxisomal dehydrogenases, Mdh3 and Gpd1, which both export reducing equivalents produced during ß-oxidation to the cytosol. Pmp47 is the first identified NAD+ carrier in yeast peroxisomes.

8.
J Biol Chem ; 299(9): 105047, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451483

RESUMO

Recently, biallelic variants in PLPBP coding for pyridoxal 5'-phosphate homeostasis protein (PLPHP) were identified as a novel cause of early-onset vitamin B6-dependent epilepsy. The molecular function and precise role of PLPHP in vitamin B6 metabolism are not well understood. To address these questions, we used PLPHP-deficient patient skin fibroblasts and HEK293 cells and YBL036C (PLPHP ortholog)-deficient yeast. We showed that independent of extracellular B6 vitamer type (pyridoxine, pyridoxamine, or pyridoxal), intracellular pyridoxal 5'-phosphate (PLP) was lower in PLPHP-deficient fibroblasts and HEK293 cells than controls. Culturing cells with pyridoxine or pyridoxamine led to the concentration-dependent accumulation of pyridoxine 5'-phosphate and pyridoxamine 5'-phosphate (PMP), respectively, suggesting insufficient pyridox(am)ine 5'-phosphate oxidase activity. Experiments utilizing 13C4-pyridoxine confirmed lower pyridox(am)ine 5'-phosphate oxidase activity and revealed increased fractional turnovers of PLP and pyridoxal, indicating increased PLP hydrolysis to pyridoxal in PLPHP-deficient cells. This effect could be partly counteracted by inactivation of pyridoxal phosphatase. PLPHP deficiency had a distinct effect on mitochondrial PLP and PMP, suggesting impaired activity of mitochondrial transaminases. Moreover, in YBL036C-deficient yeast, PLP was depleted and PMP accumulated only with carbon sources requiring mitochondrial metabolism. Lactate and pyruvate accumulation along with the decrease of tricarboxylic acid cycle intermediates downstream of α-ketoglutarate suggested impaired mitochondrial oxidative metabolism in PLPHP-deficient HEK293 cells. We hypothesize that impaired activity of mitochondrial transaminases may contribute to this depletion. Taken together, our study provides new insights into the pathomechanisms of PLPBP deficiency and reinforces the link between PLPHP function, vitamin B6 metabolism, and mitochondrial oxidative metabolism.


Assuntos
Mitocôndrias , Vitamina B 6 , Humanos , Células HEK293 , Proteínas/genética , Proteínas/metabolismo , Fosfato de Piridoxal/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transaminases/metabolismo , Vitamina B 6/metabolismo , Fibroblastos , Células Cultivadas , Piridoxaminafosfato Oxidase/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredução , Aminoácidos/metabolismo
9.
Genet Med ; 25(11): 100944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37493040

RESUMO

PURPOSE: Zellweger spectrum disorders (ZSDs) are known as autosomal recessive disorders caused by defective peroxisome biogenesis due to bi-allelic pathogenic variants in any of at least 13 different PEX genes. Here, we report 2 unrelated patients who present with an autosomal dominant ZSD. METHODS: We performed biochemical and genetic studies in blood and skin fibroblasts of the patients and demonstrated the pathogenicity of the identified PEX14 variants by functional cell studies. RESULTS: We identified 2 different single heterozygous de novo variants in the PEX14 genes of 2 patients diagnosed with ZSD. Both variants cause messenger RNA mis-splicing, leading to stable expression of similar C-terminally truncated PEX14 proteins. Functional studies indicated that the truncated PEX14 proteins lost their function in peroxisomal matrix protein import and cause increased degradation of peroxisomes, ie, pexophagy, thus exerting a dominant-negative effect on peroxisome functioning. Inhibition of pexophagy by different autophagy inhibitors or genetic knockdown of the peroxisomal autophagy receptor NBR1 resulted in restoration of peroxisomal functions in the patients' fibroblasts. CONCLUSION: Our finding of an autosomal dominant ZSD expands the genetic repertoire of ZSDs. Our study underscores that single heterozygous variants should not be ignored as possible genetic cause of diseases with an established autosomal recessive mode of inheritance.


Assuntos
Síndrome de Zellweger , Humanos , Alelos , Peroxissomos/genética , Peroxissomos/metabolismo , Transporte Proteico/fisiologia , Proteínas/genética , Síndrome de Zellweger/genética
10.
J Biol Chem ; 299(8): 105013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414147

RESUMO

Peroxisomes and the endoplasmic reticulum (ER) are intimately linked subcellular organelles, physically connected at membrane contact sites. While collaborating in lipid metabolism, for example, of very long-chain fatty acids (VLCFAs) and plasmalogens, the ER also plays a role in peroxisome biogenesis. Recent work identified tethering complexes on the ER and peroxisome membranes that connect the organelles. These include membrane contacts formed via interactions between the ER protein VAPB (vesicle-associated membrane protein-associated protein B) and the peroxisomal proteins ACBD4 and ACBD5 (acyl-coenzyme A-binding domain protein). Loss of ACBD5 has been shown to cause a significant reduction in peroxisome-ER contacts and accumulation of VLCFAs. However, the role of ACBD4 and the relative contribution these two proteins make to contact site formation and recruitment of VLCFAs to peroxisomes remain unclear. Here, we address these questions using a combination of molecular cell biology, biochemical, and lipidomics analyses following loss of ACBD4 or ACBD5 in HEK293 cells. We show that the tethering function of ACBD5 is not absolutely required for efficient peroxisomal ß-oxidation of VLCFAs. We demonstrate that loss of ACBD4 does not reduce peroxisome-ER connections or result in the accumulation of VLCFAs. Instead, the loss of ACBD4 resulted in an increase in the rate of ß-oxidation of VLCFAs. Finally, we observe an interaction between ACBD5 and ACBD4, independent of VAPB binding. Overall, our findings suggest that ACBD5 may act as a primary tether and VLCFA recruitment factor, whereas ACBD4 may have regulatory functions in peroxisomal lipid metabolism at the peroxisome-ER interface.


Assuntos
Proteínas de Membrana , Peroxissomos , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Metabolismo dos Lipídeos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Peroxissomos/metabolismo
11.
Antioxidants (Basel) ; 12(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371965

RESUMO

Peroxisomes serve as important centers for cellular redox metabolism and communication. However, fundamental gaps remain in our understanding of how the peroxisomal redox equilibrium is maintained. In particular, very little is known about the function of the nonenzymatic antioxidant glutathione in the peroxisome interior and how the glutathione antioxidant system balances with peroxisomal protein thiols. So far, only one human peroxisomal glutathione-consuming enzyme has been identified: glutathione S-transferase 1 kappa (GSTK1). To study the role of this enzyme in peroxisomal glutathione regulation and function, a GSTK1-deficient HEK-293 cell line was generated and fluorescent redox sensors were used to monitor the intraperoxisomal GSSG/GSH and NAD+/NADH redox couples and NADPH levels. We provide evidence that ablation of GSTK1 does not change the basal intraperoxisomal redox state but significantly extends the recovery period of the peroxisomal glutathione redox sensor po-roGFP2 upon treatment of the cells with thiol-specific oxidants. Given that this delay (i) can be rescued by reintroduction of GSTK1, but not its S16A active site mutant, and (ii) is not observed with a glutaredoxin-tagged version of po-roGFP2, our findings demonstrate that GSTK1 contains GSH-dependent disulfide bond oxidoreductase activity.

12.
Free Radic Biol Med ; 206: 22-32, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37355054

RESUMO

Reduced (NADH) and oxidized (NAD+) nicotinamide adenine dinucleotides are ubiquitous hydride-donating/accepting cofactors that are essential for cellular bioenergetics. Peroxisomes are single-membrane-bounded organelles that are involved in multiple lipid metabolism pathways, including beta-oxidation of fatty acids, and which contain several NAD(H)-dependent enzymes. Although maintenance of NAD(H) homeostasis in peroxisomes is considered essential for peroxisomal beta-oxidation, little is known about the regulation thereof. To resolve this issue, we have developed methods to specifically measure intraperoxisomal NADH levels in human cells using peroxisome-targeted NADH biosensors. By targeted CRISPR-Cas9-mediated genome editing of human cells, we showed with these sensors that the NAD+/NADH ratio in cytosol and peroxisomes are closely connected and that this crosstalk is mediated by intraperoxisomal lactate and malate dehydrogenases, generated via translational stop codon readthrough of the LDHB and MDH1 mRNAs. Our study provides evidence for the existence of two independent redox shuttle systems in human peroxisomes that regulate peroxisomal NAD+/NADH homeostasis. This is the first study that shows a specific metabolic function of protein isoforms generated by translational stop codon readthrough in humans.


Assuntos
NAD , Peroxissomos , Humanos , NAD/metabolismo , Códon de Terminação/metabolismo , Peroxissomos/metabolismo , Biossíntese de Proteínas , Oxirredução , Homeostase
13.
J Allergy Clin Immunol ; 152(4): 1025-1031.e2, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37364720

RESUMO

BACKGROUND: In the isoprenoid biosynthesis pathway, mevalonate is phosphorylated in 2 subsequent enzyme steps by MVK and PMVK to generate mevalonate pyrophosphate that is further metabolized to produce sterol and nonsterol isoprenoids. Biallelic pathogenic variants in MVK result in the autoinflammatory metabolic disorder MVK deficiency. So far, however, no patients with proven PMVK deficiency due to biallelic pathogenic variants in PMVK have been reported. OBJECTIVES: This study reports the first patient with functionally confirmed PMVK deficiency, including the clinical, biochemical, and immunological consequences of a homozygous missense variant in PMVK. METHODS: The investigators performed whole-exome sequencing and functional studies in cells from a patient who, on clinical and immunological evaluation, was suspected of an autoinflammatory disease. RESULTS: The investigators identified a homozygous PMVK p.Val131Ala (NM_006556.4: c.392T>C) missense variant in the index patient. Pathogenicity was supported by genetic algorithms and modeling analysis and confirmed in patient cells that revealed markedly reduced PMVK enzyme activity due to a virtually complete absence of PMVK protein. Clinically, the patient showed various similarities as well as distinct features compared to patients with MVK deficiency and responded well to therapeutic IL-1 inhibition. CONCLUSIONS: This study reported the first patient with proven PMVK deficiency due to a homozygous missense variant in PMVK, leading to an autoinflammatory disease. PMVK deficiency expands the genetic spectrum of systemic autoinflammatory diseases, characterized by recurrent fevers, arthritis, and cytopenia and thus should be included in the differential diagnosis and genetic testing for systemic autoinflammatory diseases.

14.
Methods Mol Biol ; 2643: 233-245, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952190

RESUMO

The development and application of the CRISPR-Cas9 technology for genome editing of mammalian cells have opened up a wealth of possibilities for genetically modifying and manipulating human cells, and use in functional studies or therapeutic approaches.Here we describe the approach that we have been using successfully to generate multiple human cell lines with targeted (partial) gene deletions, i.e., knockout cells, or human cells with modified genomic nucleotide sequences, i.e., knock-in cells, in genes encoding known or putative proteins involved in peroxisome biogenesis or peroxisomal functions.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Humanos , Sistemas CRISPR-Cas/genética , Peroxissomos/genética , Genoma , Sequência de Bases , Mamíferos/genética
15.
J Lipid Res ; 64(5): 100364, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990386

RESUMO

Peroxisomes are single-membrane bounded organelles that in humans play a dual role in lipid metabolism, including the degradation of very long-chain fatty acids and the synthesis of ether lipids/plasmalogens. The first step in de novo ether lipid synthesis is mediated by the peroxisomal enzyme glyceronephosphate O-acyltransferase, which has a strict substrate specificity reacting only with the long-chain acyl-CoAs. The aim of this study was to determine the origin of these long-chain acyl-CoAs. To this end, we developed a sensitive method for the measurement of de novo ether phospholipid synthesis in cells and, by CRISPR-Cas9 genome editing, generated a series of HeLa cell lines with deficiencies of proteins involved in peroxisomal biogenesis, beta-oxidation, ether lipid synthesis, or metabolite transport. Our results show that the long-chain acyl-CoAs required for the first step of ether lipid synthesis can be imported from the cytosol by the peroxisomal ABCD proteins, in particular ABCD3. Furthermore, we show that these acyl-CoAs can be produced intraperoxisomally by chain shortening of CoA esters of very long-chain fatty acids via beta-oxidation. Our results demonstrate that peroxisomal beta-oxidation and ether lipid synthesis are intimately connected and that the peroxisomal ABC transporters play a crucial role in de novo ether lipid synthesis.


Assuntos
Ácidos Graxos , Plasmalogênios , Humanos , Plasmalogênios/metabolismo , Células HeLa , Ácidos Graxos/metabolismo , Peroxissomos/metabolismo , Oxirredução , Acil Coenzima A/metabolismo , Éteres
16.
Physiol Rev ; 103(1): 957-1024, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35951481

RESUMO

Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.


Assuntos
Peroxissomos , Animais , Humanos , Camundongos
17.
J Inherit Metab Dis ; 46(2): 273-285, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36522796

RESUMO

Peroxisomes are essential organelles involved in lipid metabolisms including plasmalogen biosynthesis and ß-oxidation of very long-chain fatty acids. Peroxisomes proliferate by the growth and division of pre-existing peroxisomes. The peroxisomal membrane is elongated by Pex11ß and then divided by the dynamin-like GTPase, DLP1 (also known as DRP1 encoded by DNM1L gene), which also functions as a fission factor for mitochondria. Nucleoside diphosphate kinase 3 (NME3) localized in both peroxisomes and mitochondria generates GTP for DLP1 activity. Deficiencies of either of these factors induce abnormal morphology of peroxisomes and/or mitochondria, and are associated with central nervous system dysfunction. To investigate whether the impaired division of peroxisomes affects lipid metabolisms, we assessed the phospholipid composition of cells lacking each of the different division factors. In fibroblasts from the patients deficient in DLP1, NME3, or Pex11ß, docosahexaenoic acid (DHA, C22:6)-containing phospholipids were found to be decreased. Conversely, the levels of several fatty acids such as arachidonic acid (AA, C20:4) and oleic acid (C18:1) were elevated. Mouse embryonic fibroblasts from Drp1- and Pex11ß-knockout mice also showed a decrease in the levels of phospholipids containing DHA and AA. Collectively, these results suggest that the dynamics of organelle morphology exert marked effects on the fatty acid composition of phospholipids.


Assuntos
Ácidos Docosa-Hexaenoicos , Peroxissomos , Animais , Camundongos , Ácidos Docosa-Hexaenoicos/metabolismo , Dinaminas/metabolismo , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Morfogênese , Nucleosídeo NM23 Difosfato Quinases/metabolismo , Peroxissomos/metabolismo , Fosfolipídeos/metabolismo
18.
Mol Syst Biol ; 18(9): e11186, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36164978

RESUMO

Seventy years following the discovery of peroxisomes, their complete proteome, the peroxi-ome, remains undefined. Uncovering the peroxi-ome is crucial for understanding peroxisomal activities and cellular metabolism. We used high-content microscopy to uncover peroxisomal proteins in the model eukaryote - Saccharomyces cerevisiae. This strategy enabled us to expand the known peroxi-ome by ~40% and paved the way for performing systematic, whole-organellar proteome assays. By characterizing the sub-organellar localization and protein targeting dependencies into the organelle, we unveiled non-canonical targeting routes. Metabolomic analysis of the peroxi-ome revealed the role of several newly identified resident enzymes. Importantly, we found a regulatory role of peroxisomes during gluconeogenesis, which is fundamental for understanding cellular metabolism. With the current recognition that peroxisomes play a crucial part in organismal physiology, our approach lays the foundation for deep characterization of peroxisome function in health and disease.


Assuntos
Peroxissomos , Proteoma , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Peroxissomos/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Brain Res Bull ; 189: 69-79, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35981629

RESUMO

Phospholipid transport from the periphery to the brain is an understudied topic. When certain lipid species are deficient due to impaired synthesis, though, transfer across the blood-brain barrier is essential for replenishing lipids in the brain. For example, the deficiency in plasmalogens, the most abundant ether lipids in mammals, has detrimental effects on the brain, which is a major issue in inherited peroxisomal disorders but also contributes to more common disorders like Alzheimer's disease. Oral administration of alkylglycerols like batyl alcohol, which carry a pre-formed ether bond, enables replenishment of ether lipids in various peripheral tissues. However, plasmalogen deficiency in the brain cannot be overcome by this approach. Here, we tried to increase cerebral plasmalogen uptake by modulating the efflux transport across the blood-brain barrier. We hypothesized, based on previous literature, that at least some ether lipid species readily enter endothelial cells of the barrier through the transporter MFSD2A but are re-exported by ATP-binding cassette (ABC) transporters. By crossbreeding Mdr1a-/-/Mdr1b-/-/Bcrp-/- and ether lipid-deficient Gnpat-/- mice as well as pharmacological inhibition with MK-571 to inactivate the major ABC transporters at the blood-brain barrier, we evaluated the potential of combined ABC transporter inhibition and oral batyl alcohol administration for the treatment of plasmalogen deficiency. We found that even in the absence of the most abundant ABC transporters, batyl alcohol supplementation did not restore plasmalogen levels in the brain, despite the presence of a wide spectrum of ether lipid subspecies in the plasma as demonstrated by lipidomic analysis. Surprisingly, batyl alcohol treatment of pregnant Gnpat+/- dams had beneficial effects on the plasmalogen levels of Gnpat-/- offspring with defective ether lipid biosynthesis, independently of ABC transporter status at the placental barrier. Our results underline the autonomy of brain lipid homeostasis and indicate that peripheral supplementation of ether lipids is not sufficient to supply the brain with larger amounts of plasmalogens. Yet, the findings suggest that alkylglycerol treatment during pregnancy may pose a viable option to ameliorate some of the severe developmental defects of inborn ether lipid deficiency.


Assuntos
Éter , Plasmalogênios , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP , Trifosfato de Adenosina , Animais , Barreira Hematoencefálica , Células Endoteliais , Éter/farmacologia , Feminino , Éteres de Glicerila , Mamíferos , Camundongos , Proteínas de Neoplasias , Placenta , Gravidez
20.
J Inherit Metab Dis ; 45(4): 663-681, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35506430

RESUMO

Exome sequencing (ES) in the clinical setting of inborn metabolic diseases (IMDs) has created tremendous improvement in achieving an accurate and timely molecular diagnosis for a greater number of patients, but it still leaves the majority of patients without a diagnosis. In parallel, (personalized) treatment strategies are increasingly available, but this requires the availability of a molecular diagnosis. IMDs comprise an expanding field with the ongoing identification of novel disease genes and the recognition of multiple inheritance patterns, mosaicism, variable penetrance, and expressivity for known disease genes. The analysis of trio ES is preferred over singleton ES as information on the allelic origin (paternal, maternal, "de novo") reduces the number of variants that require interpretation. All ES data and interpretation strategies should be exploited including CNV and mitochondrial DNA analysis. The constant advancements in available techniques and knowledge necessitate the close exchange of clinicians and molecular geneticists about genotypes and phenotypes, as well as knowledge of the challenges and pitfalls of ES to initiate proper further diagnostic steps. Functional analyses (transcriptomics, proteomics, and metabolomics) can be applied to characterize and validate the impact of identified variants, or to guide the genomic search for a diagnosis in unsolved cases. Future diagnostic techniques (genome sequencing [GS], optical genome mapping, long-read sequencing, and epigenetic profiling) will further enhance the diagnostic yield. We provide an overview of the challenges and limitations inherent to ES followed by an outline of solutions and a clinical checklist, focused on establishing a diagnosis to eventually achieve (personalized) treatment.


Assuntos
Exoma , Genômica , DNA Mitocondrial , Exoma/genética , Testes Genéticos/métodos , Genômica/métodos , Fenótipo , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...